If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+90x-14=0
a = -16; b = 90; c = -14;
Δ = b2-4ac
Δ = 902-4·(-16)·(-14)
Δ = 7204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7204}=\sqrt{4*1801}=\sqrt{4}*\sqrt{1801}=2\sqrt{1801}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{1801}}{2*-16}=\frac{-90-2\sqrt{1801}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{1801}}{2*-16}=\frac{-90+2\sqrt{1801}}{-32} $
| 5x2−7=2x−76 | | 1/2(2x-3)=11 | | 420=7/6v | | X^2+y^2=394 | | ((4x-3)/5)-(4x/3)=(2(x-13/15) | | 3(3n+1)=8(7n+6)+5 | | 7/3x+3/8=5/6 | | x=(x^2-9x+20)/4x | | 6(3a+8)=-22+8a | | 3(x-9)^2=81 | | 1/5x+1/6x=11 | | 34-2x=5x+1 | | y1=y2 | | 10+3m=31 | | 2-x=-2x-9 | | (8-8i)^2=-128i | | X-24/8=x/6 | | 4/3+3m/4=37/12 | | 3y–4=y+10 | | 11(4p+4)-4p=4(7p-7 | | 6(x-4)/2=3(x+6)/11 | | 4(w+1)=4 | | 4(w=1)=4 | | 6p+10=3p-2 | | 3y-4=+10 | | 1/2r-3=2-3/4r | | 54+9x=21x+18 | | .9x=11.7 | | 16*x^2-80*x+30=0 | | 32x+51=-15+35x | | 7-6x=-3x-8 | | 9(x-4)/3=3(x+3)/8 |